

1

Mantra Development Paradigm Principles

White Paper

Principles to be followed to develop

lean and highly evolvable projects.

www.mantrajs.com

2

REASONS WHY SOFTWARE TENDS TO

BECOME CORRUPTED

Software development in a growing project leads, sooner or

later, to a corrupted project if most of the best practices are not

consistently and faithfully followed.

A software project is considered to be corrupt when:

• It becomes increasingly difficult to maintain.

• The cost (measured in time) of correcting errors is

increasing.

• The cost and difficulty of adding new features or

changing existing ones are also increasing.

This effect, if not avoided, has enormous economic and

productivity repercussions, often causing a product or project

to become unviable.

3

In this regard, this characteristic of corruptibility is

consubstantial to software development and, fundamentally, at

its base, is because in most projects:

• It is not possible to dedicate enough time and effort to

refactor continuously.

• No effort is dedicated to redesigning the existing when

new requirements are implemented.

• There is no correct testing policy.

• There is not a sufficiently mature culture among

developers to understand how technical debt

accumulates and how to avoid it.

• Not thinking from a framework perspective.

On the other hand, it is common in startups, prototypes,

entrepreneurial projects, and others poorly specified by the

customer or with a deficient functional analysis, that there is a

lack of knowledge of future requirements, which, when

implemented without any improvement in the design,

architecture and code quality of the existing ones, makes the

inclusion of these requirements increasingly difficult and

costly, causing more significant technical debt and a higher

degree of corruptibility, hence the impossibility of starting with

static and too rigid designs and architectures that, later,

perhaps months or years later, have to be equally compatible

with the new requirements to be incorporated in the project.

4

In general terms, this is how a big ball of mud is produced,

which gradually grows until at some point it is so unsustainable

that the project has to be redone in whole or in large part

(sometimes fictitiously labeling the new project as a superior

version of the previous one...) if the corporate entity that

supports it can assume the costs when the project is not

considered unfeasible and is abandoned.

All this gets even worse if technologies are chosen that are

too changeable or not mature enough to require resources (and

their impact on costs) to be devoted to their migration, when

the software is not developed according to a specific

deployment platform, thus limiting some design and

architecture decisions that fit better with the nature of the

project.

In this respect and challenging to maintain, the

consequences of a corrupt software project go far beyond just

technical and stress consequences for developers. They can

jeopardize the very viability of a business, which happens very

often in the software industry.

From all of the above, which is just a very abbreviated

summary of why software tends to become complicated and

obfuscated, we can see the need to develop software in a certain

way, following certain principles, to avoid or minimize the

above effects, especially in lean projects without a clear scope

or that are going to change or pivot a lot during their lifetime.

5

This inherent characteristic of software can be avoided or

minimized by following some principles, such as those

presented in this document.

This whitepaper outlines these paradigmatic principles that

should be followed by a software project that:

• It will change and evolve considerably.

• It is mainly unknown a priori in which direction it will

change and evolve in the future.

• Maintainability, readability, and code reusability are

intended to be the cornerstone of the project without

extra cost.

• Development speed should be as fast as possible.

• The accumulation of relevant technical debt is avoided

as much as possible.

• Creating homogeneous, small, and well-organized code

blocks that can be reused in other projects is

encouraged.

The following development principles enable all of the above

and complement others such as S.O.L.I.D., dependency

injection, etc. Some of these principles are considered best

practices in software development or follow well-known design

practices.

6

All these principles should be used together, allowing the

implementation of complex and large applications or systems

and platforms (with a set of related applications), reducing

technical debt, and facilitating all of the above.

Building maintainable and evolvable software involves the

design, architecture, testability, and methodology concepts.

These principles are listed below to define them as simply as

possible.

7

PRINCIPLES

RADICAL COMPONENTIZATION

The software project must be organized into components.

These are the minimum units of code. Everything in the project

must be wrapped under the structure of a component.

A project is composed of a set of components that are related.

Usually, a project is composed of tens or hundreds of

components well organized by their responsibility.

A component is the minimum unit of code and must comply

with:

• It has a single purpose.

• It is as small as possible in terms of lines of code (at

most, a few hundred lines).

• The functionality that the component implements is

simple, concrete, and belongs to the same level of

abstraction or the same level of the domain.

• The component exposes its functionality or the assets it

defines and implements to the rest of the project.

8

• Components work decoupled from each other.

• There are no hard dependencies between components,

so replacing one with an improved or different

version will not affect the project's performance. For

this purpose, the components expose their

functionality through integration APIs.

COMPONENTS COMMUNICATE THROUGH

APIS

Using the functionality of one component by another is done

through the definition of APIs. The invocation of these APIs is

not direct, but a framework must serve as an intermediary.

COMPONENTS INDICATE RELEVANT FACTS

THROUGH EVENTS.

Components indicate situations or facts in the system by

emitting events so that other components can subscribe to

them to perform decoupled third actions without the need to

bind the code with hard dependencies.

9

VERY HIGH-LEVEL FUNCTIONALITY IS

IMPLEMENTED AS A COMPONENT

ARRANGER

As mentioned above, most components must implement

basic or low-level functionality. The implementation of higher-

level functionality, business logic, or more complex business

processes is also implemented in components that utilize the

former.

MINIMALISTIC AND INDEPENDENT DATA

MODELS

A component may indicate that it requires to have

information persisted utilizing a data model. Since the

component's functionality must be concrete and

straightforward, its data model to be maintained will also be

simple and concrete: few data entities with few properties each.

There are no hard dependencies between the data model

from one component and another. These dependencies are

semantic consensuses or assumptions between components.

10

REPOSITORIES AND DATA PERSISTENCE

MUST BE TRANSPARENT TO THE

COMPONENTS.

Data models are exposed by the components or indicated by

definition and never refer to any specific persistent technology.

DIFFERENT TYPES OF PERSISTENCE IN THE

SAME PROJECT

Although the data models of the components are simple and

are defined by a statement, and the kind of persistence is

transparent to the component, different types of persistence

should be able to coexist in the same project or system,

depending on the nature of the data models to be implemented.

MINIMUM AND INCREMENTAL UPGRADES

Components may be upgraded and indicate this

circumstance. In the context of the project and its production

run, these updates are small, frequent, and incremental.

ISOLATION OF NON-STANDARD THIRD-

PARTY TECHNOLOGIES

The use of very specific third-party technologies is done

utilizing wrappers that serve as a bridge between them and the

11

rest of the project to be replaceable at any given time.

A project or system is comprised of a set of applications that

share components.

In the same project, different applications related to different

purposes coexist so that they are also small and reuse a set of

system components for their deployment.

PERFORMANCE BY STATEMENT

Some repetitive aspects of the system, within its particular

domain, should be abstracted in statements, not in ad hoc

programming.

12

PRACTICAL CONSEQUENCES

The practical consequences of following the above principles

are described below through explanation and justification.

Radical componentization

The application or system is implemented in its entirety by

components that should be as small as possible, which allows a

better organization of the system.

Being small components, they will be more reusable in other

projects.

Components can be organized according to their purpose, the

area of the system they implement, or according to their

hierarchy in a layered distribution.

A system (set of applications), or an application, can be

composed of tens or hundreds of components that operate in a

coordinated manner through the context (framework).

The component's functionality must “look” as little as

possible to the nature of the application to be implemented.

This will increase the degree of its reusability in other projects.

13

The components act wholly decoupled from each other

A component may depend on others and, at the same time,

expose functionality that is consumed by as many others.

However, this dependency is not direct but is managed by the

system context that acts as an intermediary between the

components.

Since the components are small and highly decoupled from

each other, tests for each component are more straightforward

and more independent to implement.

Components Communicate via APIs

A component exposes its functionality by defining APIs and,

in turn, consumes the functionality of others through their

APIs. The context takes care of the intermediate work of

communicating one component with another.

The components indicate relevant facts through events

Since the system requirements will change significantly over

the software project's life, issuing events to manage the very

high-level logic makes the coupling of components even

smaller, allowing even more flexibility to add or modify

functionality in the future.

14

High-level functionality is implemented as a

component arranger

The high-level functionality or workflows are implemented in

components whose mission will be to implement what to do

when system events are emitted.

Thus, it is possible to have in the project a section with the

arranger components to distinguish them from the rest, thus

improving the organization and localization of the code.

Minimalistic and independent data models

Since the components are small and implement, by

definition, a very particular functionality, it follows that the

data entities they need will be small and easy to define,

following a simple table model.

In addition, persistence in any data repository, whatever its

type, will be simplified and complex; large and inefficient

databases that are difficult to evolve will be avoided.

This will also simplify updates and migrations since by

managing a few data entities with a reduced number of

properties in a single component, and this routine work will be

easier to perform and less prone to errors.

Each component manages its data model through the context

independently so that a single application can have dozens of

15

components, each with its own different data model.

Repositories and data persistence must be transparent

to the components

The context handles all the data model persistence work.

Implementing this context should provide the component

with an easy and transparent way to manage its data model by

isolating it from anything to do with its actual persistence of

any kind (in the form of databases, in-memory cache, files,

etc.).

Similarly, it is the context responsible for the creation or

instantiation of the data models and the way they are

consumed.

Different types of persistence in the same project

It is natural that in an application with hundreds of

components, different types of persistence and even different

instances of them may be necessary.

By setup, the project tells the context which type of

persistence to use for each component (for example, Redis,

MySql, Sql Server, Postgresql, etc.).

This way, the component only indicates its data model and

16

uses the context to manage it without worrying about all the

plumbing necessary for its persistence.

As a natural consequence, the same application or system

can use several different databases with optimizations adapted

to each data model.

Minimal and incremental updates

Since the data models are simple and only consist of several

entities with few properties, their evolution throughout the

project's life will also be simple: adding a new property,

modifying the type of an existing property, adding a new entity,

etc.

Thus, migrating a data model to its next version will be easier

than using an extensive database with hundreds of tables and

hundreds of relationships and constraints.

Updates are intended to be small but frequent, which fits

better in an environment with a DevOps and CD/CI

(continuous development / continuous integration) culture,

favoring a greater culture of testing and constant system

updates with less risk.

The context provides the component with everything

necessary to perform this type of migration in its data models.

17

Isolation of non-standard third-party technologies

In this paradigm of complex application development, we try

not to depend "heavily" on third-party technologies that will

undoubtedly change throughout the project's life, including a

significant effort in migrations.

If one of these technologies is to be used, it must be

adequately insulated in components that serve as wrappers and

can be replaced at any time.

A system is composed of a set of applications that

share components

In the usual ecosystem of a growing system, the need for

different applications with different purposes will naturally

arise.

The context must allow different applications to be

implemented using the same set of components that make up

the system.

For example, there is nothing worse than trying to

implement in the same user interface, the end-user or customer

functionality, plus the administration functionality, plus the

ticket or incident management functionality, plus the analytics

control panel, etc.

By creating independent applications with different purposes

18

and using the same components, the size of these applications

will be smaller, allowing a much simpler and easier

maintainability and evolution.

Similarly, this will also make it possible to deploy each of the

applications that make up the system in different

environments, with different levels of performance or security.

Performance by Statement

Some specific activities of the domain to be implemented in

the application are usually repetitive or very functionally

related.

When this is detected, it is required to implement a more

abstract functionality so that the concrete one is defined by

statement (xml, json, etc.).

For example, the generation and maintenance of forms are

costly in any project: a better approach would be to define them

by a statement in json objects indicating with properties the

content of each form. At the same time, implementing a specific

component (abstraction) would take care of generating it

(rendering it) and managing its performance.

19

MANTRA FRAMEWORK

The above foundational principles are implemented in

Mantra to allow the construction of complex applications (and

systems composed of several applications) that will evolve and

change significantly during their development, with the most

reusable composition possible.

Rafael Gómez Blanes, 2022

www.mantrajs.com

